HOW STUFF WORKS
http://auto.howstuffworks.com/car-suspension.htm
Spring rate
Further information: Spring rate
The spring rate (or suspension rate) is a component in setting the vehicle's ride height or its location in the suspension stroke. Vehicles which carry heavy loads will often have heavier springs to compensate for the additional weight that would otherwise collapse a vehicle to the bottom of its travel (stroke). Heavier springs are also used in performance applications where the loading conditions experienced are more extreme.
Springs that are too hard or too soft cause the suspension to become ineffective because they fail to properly isolate the vehicle from the road. Vehicles that commonly experience suspension loads heavier than normal have heavy or hard springs with a spring rate close to the upper limit for that vehicle's weight.
Travel
Travel is the measure of distance from the bottom of the suspension stroke (such as when the vehicle is on a jack and the wheel hangs freely), to the top of the suspension stroke (such as when the vehicles wheel can no longer travel in an upward direction toward the vehicle). Bottoming or lifting a wheel can cause serious control problems or directly cause damage. "Bottoming" can be either the suspension, tires, fenders, etc. running out of space to move or the body or other components of the car hitting the road. The control problems caused by lifting a wheel are less severe if the wheel lifts when the spring reaches its unloaded shape than they are if travel is limited by contact of suspension members.
Damping
Damping is the control of motion or oscillation, as seen with the use of hydraulic gates and valves in a vehicles shock absorber. This may also vary, intentionally or unintentionally. Like spring rate, the optimal damping for comfort may be less than for control.
Damping controls the travel speed and resistance of the vehicles suspension. An undamped car will oscillate up and down. With proper damping levels, the car will settle back to a normal state in a minimal amount of time. Most damping in modern vehicles can be controlled by increasing or decreasing the resistance to fluid flow in the shock absorber.
Camber control
See dependent and independent below.
Camber changes due to wheel travel, body roll and suspension system deflection or compliance. In general, a tire wears and brakes best at -1 to -2 degrees of camber from vertical. Depending on the tire and the road surface, it may hold the road best at a slightly different angle. Small changes in camber, front and rear, can be used to tune handling. Some race cars are tuned with -2~-7 degree camber depending on the type of handling desired and the tire construction. Oftentimes, too much camber will result in the decrease of braking performance due to a reduced contact patch size through excessive camber variation in the suspension geometry. The amount of camber change in bump is determined by the instantaneous front view swing arm (FVSA) length of the suspension geometry, or in other words, the tendency of the tire to camber inward when compressed in bump.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment